Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A. Jeyabharathi, ${ }^{\text {a }}$

M. N. Ponnuswamy, ${ }^{\text {a }}$ *
S. Manikandan ${ }^{\text {b }}$ and
R. Raghunathan ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{\text {b }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: mnpsy@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.047$
$w R$ factor $=0.148$
Data-to-parameter ratio $=15.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Spiro[3-(4-chlorophenyl)-4-(4-methyl-phenyl)-4,5-dihydroisoxazole-5,3'-flavan-4'-one]

The pyran ring of the flavanone moiety in the title compound, $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{ClNO}_{3}$, is puckered due to the saturation of a bond and this causes the ring to adopt a sofa conformation. The spiroisoxazoline ring adopts an envelope conformation. The phenyl rings on the isoxazoline ring are perpendicular to each other. The structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Flavanones are widely distributed and they form a part of our human diet, owing to their abundance in edible plants. The different properties and activities possessed by these compounds are discussed in our previous article (Jeyabharathi et al., 2003). To understand the structure and conformation, a crystallographic study of the title compound, (I), was undertaken.

The geometry of the flavanone moiety in (I) agrees with reported values (Tomlin \& Cantrell, 1990). As shown in Fig. 1, the pyran ring is planar, with the fused phenyl ring making a dihedral angle of $3.9(1)^{\circ}$, larger than the reported value (Kendi \& Ozbey, 1995). This may be due to the substitution at C5. The mean plane of the benzopyran ring is perpendicular to the isoxazoline ring plane. A study of torsion angles and asymmetry parameters (Cremer \& Pople, 1975) reveals that the pyran ring adopts a slightly distorted sofa conformation $\left[q_{2}=0.343(2) \AA, q_{3}=-0.263(2) \AA, Q_{T}=0.432(2) \AA\right.$ and $\varphi_{2}=$ $\left.-107.3(4)^{\circ}\right]$. For the isoxazoline ring, $q_{2}=0.146(2) \AA$ and $\varphi_{2}=$ -41.3 (9) ${ }^{\circ}$, which confirms its envelope conformation. Apart from van der Waals interactions, the packing of the molecules in the crystal structure is stabilized by intermolecular C $\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. Thus $\mathrm{C} 19-\mathrm{H} 19$ points towards the centroid of the $\mathrm{C} 22-\mathrm{C} 27\left(x-\frac{1}{2},-\frac{1}{2}-y\right.$, $z-\frac{3}{2}$) phenyl ring, $C g(1)$, suggesting a $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interaction (Table 2). The geometry of these interactions is comparable with others reported in the literature (Abdul Ajees et al., 2001; Gallagher et al., 2000; Kooijman et al., 2000).

Received 4 December 2002
Accepted 16 January 2003
Online 31 January 2003

Figure 1
A view of the molecular structure of (I), showing ellipsoids at the 40% probability level. H atoms have been omitted.

Experimental

To a stirred solution of 3-p-methylbenzylidene-4-flavanone (3 mmol) and N-(p-chlorobenzhydroxyiminoyl chloride (3 mmol) in dry CHCl_{3} $(5 \mathrm{ml}), 3.3 \mathrm{mmol}$ of triethylamine was added. The reaction was monitored by TLC. After completion of the reaction, water was added to remove triethylamine hydrochloride and the resulting solution extracted with CHCl_{3}. The extracts were combined and dried using MgSO_{4} and the product was purified by column chromatography (hexane/ethylacetate 9:1). The title compound, (I), was recrystallized from ethylacetate/hexane.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{30} \mathrm{H}_{22} \mathrm{ClNO}_{3} \\
& M_{r}=479.94 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=14.139(2) \AA \\
& b=10.939(2) \AA \\
& c=16.139(3) \AA \\
& \beta=99.809(13)^{\circ} \\
& V=2459.8(8) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.296 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=14-25^{\circ} \\
& \mu=1.63 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.18 \times 0.17 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
 diffractometer

$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.711, T_{\text {max }}=0.849$
5076 measured reflections
4874 independent reflections
2453 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.028 \\
& \theta_{\max }=72.4^{\circ} \\
& h=0 \rightarrow 17 \\
& k=0 \rightarrow 13 \\
& l=-19 \rightarrow 19 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \quad \text { frequency: } 120 \text { min } \\
& \quad \text { intensity decay: }<0.1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.148$
$S=0.98$
4874 reflections
317 parameters
H -atom parameters constrained

[^0]Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{N} 2$	$1.415(2)$	$\mathrm{O}^{\prime}-\mathrm{C}^{\prime}$	$1.456(3)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.469(3)$	$\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$	$1.221(3)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.283(3)$	$\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$1.468(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.514(3)$	$\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$1.387(4)$
$\mathrm{C} 5-\mathrm{C} 4^{\prime}$	$1.522(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.391(4)$
$\mathrm{C} 5-\mathrm{C} 2^{\prime}$	$1.527(3)$		
$\mathrm{O} 1^{\prime}-\mathrm{C} 6^{\prime}$	$1.366(3)$		
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 3$	$-8.5(3)$	$\mathrm{N} 2-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	$14.4(2)$
$\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.6(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$-13.9(2)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$10.1(3)$	$\mathrm{C} 5-\mathrm{C} 2^{\prime}-\mathrm{C} 22-\mathrm{C} 23$	$148.6(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\prime}$	0.98	2.43	$2.824(3)$	103
$\mathrm{C} 7-\mathrm{H} 7 \cdots 1^{\prime \text { i }}$	0.93	2.72	$3.610(3)$	160
$\mathrm{C}^{\prime}-\mathrm{H}^{\prime} \cdots \mathrm{N}^{\mathrm{i}}$	0.98	2.66	$3.482(3)$	142
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\prime \text { ii }}$	0.98	2.64	$3.535(3)$	153
$\mathrm{C} 19-\mathrm{H} 19 \cdots \operatorname{Cg}\left(1^{\text {iii }}\right)$	0.93	2.75	3.597	153

Symmetry codes: (i) $2-x,-y,-z$; (ii) $2-x, 1-y,-z$; (iii) $x-\frac{1}{2},-\frac{1}{2}-y, z-\frac{3}{2}$.

After checking their presence in a difference map, all H atoms were fixed geometrically and allowed to ride on their parent C atoms and refined isotropically.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: $S D P$ (Frenz, 1978); data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: PARST97 (Nardelli, 1995) and PLATON (Spek, 1998).

AJ thanks the University Grants Commission for the award of a teacher fellowship under FIP. SM thanks the CSIR for SRF.

References

Abdul Ajees, A., Parthasarathi, S., Manikandan, S. \& Raghunathan, R. (2001). Acta Cryst. C57, 473-475.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld and G. C. Bassi, pp. 64-71. Delft University Press.

Gallagher, J. F., Brady, F. \& Murphy, C. (2000). Acta Cryst. C56, 365-368.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Jeyabharathi, A., Ponnuswamy, M. N., Manikandan, S. \& Raghunathan, R. (2003). Acta Cryst. E59, o237-o239.

Kendi, E. \& Ozbey, S. (1995). Acta Cryst. C51, 1442-1444.
Kooijman, H., Spek, A. L., Kleijn, H., van Maanen, H. L., Jastrzebski, J. T. B. H. \& Van Koten, G. (2000). Acta Cryst. C56, 481-483.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. Utrecht University, The Netherlands.
Tomlin, D. W. \& Cantrell, J. S. (1990). Acta Cryst. C46, 519-521.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

[^0]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0767 P)^{2}\right]$
 where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }<0.001$
 $\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{-3}$
 $\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$
 Extinction correction: SHELXL97
 Extinction coefficient: 0.00123 (18)

